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Creation of nonlinear localized modes in discrete lattices
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Creation of intrinsic localized modes in homogeneous nonlinear lattices is discussed, taking as a
special example a chain of particles interacting via harmonic and even-power anharmonic potentials.
The analysis is based on an effective equation for the wave envelope that, in particular, seems to
be an alternative discrete version of the well-known nonlinear Schrédinger equation. It is pointed
out that modulational instability and nonlinearity-induced blowup may be considered as two main
physical mechanisms for generation of highly localized modes in homogeneous nonlinear chains.

PACS number(s): 46.10.+z, 63.20.Pw, 03.40.Kf

As is well known, spatially localized oscillations called
“intrinsic localized modes” can exist in strongly anhar-
monic homogeneous lattices when nonlinearity is intro-
duced through interatomic interactions [1, 2] or an exter-
nal on-site potential [3]. Highly localized modes involve
only a few particles and in the case when interatomic
coupling is purely nonlinear, they may be treated as com-
pactons, i.e., discrete solitons with a compact support [4].
As has been mentioned recently in [5, 6], two stationary
localized modes proposed by Sievers and Takeno [1] and
Page [2] may be attributed to extrema points of an ef-
fective periodic potential, the so-called Peierls-Nabarro
relief, generated by the lattice discreteness.

One of the principal problems in the theory of intrinsic
localized modes is to predict and discuss possible mech-
anisms of energy localization leading to the formation
of large-amplitude nonlinear excitations in discrete lat-
tices. When a lattice is with impurities, inhomogeneities
may effectively localize energy at [7] or between [8] im-
purity sites leading to an effective process by which en-
ergy, being initially distributed in a nonlinear lattice,
can localize itself into large-amplitude excitations. How-
ever, this mechanism of the energy localization is cer-
tainly not possible for homogeneous lattices. However,
to make a conclusion about importance of the intrinsic
localized modes in transport properties of strongly non-
linear discrete lattices, one should propose simple mech-
anisms (other than those involving impurities) of the en-
ergy localization in lattices which might be responsible
for formation of highly localized large-amplitude modes.

The purpose of the present paper is to discuss possible
mechanisms leading to the formation of intrinsic local-
ized modes in chains with strong nonlinear interatomic
interaction. The analysis presented is based on an ef-
fective discrete nonlinear equation for the wave envelope
of relative particle displacements. It is pointed out that
nonlinearity-induced modulational instability and, for the
case of supercritical power nonlinearity, collapse dynam-
ics seem to be important effects responsible for formation
of highly localized nonlinear modes in discrete systems.

I consider the dynamics of a one-dimensional chain
made of particles (atoms) with mass m coupled with their
neighbors by harmonic and even-power anharmonic po-
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tentials (see, e.g., Ref. [2]). Denoting by u,(t) the dis-
placement of atom n, its equation of motion is

mil = kz(un+1 +Up—1 — 211.") + kr[(u'n+1 - un)2T+1
+(un—1 - un)2T+1]a T 2 15 (1)
where k2 and k, are the corresponding coupling constants
which are assumed to be positive. The model (1) is an
important generalization of the models considered in [1,
2] because dealing with large-amplitude oscillating modes
one should naturally expect an importance of higher-
order nonlinearities rather than low-order ones. At the
same time, the model (1) takes into account a linear inter-
particle interaction (~ k3) for, at least, two reasons: (i)
this allows one to save many features of linear lattices,
e.g., the spectrum of linear excitations, to understand
how nonlinearities do modify the lattice properties, and
(ii) the model covers the well-known case r = 1 treated
previously when the effective nonlinear Scrédinger equa-
tion has stable solutions.
Introducing the relative displacements, v, = up 41—y,
Eq. (1) may be reduced to the following:

My = kg (Vni1+vn_1—20,) +k, (vI T 02T —2027FT),
(2)

where the dot stands for the time derivative. Linear oscil-
lations in the chain of the frequency w and wave number
q are described by the dispersion relation

w? =4 (%) sin? (%) , (3)

a being the lattice spacing. As shown by Eq. (3), the
linear spectrum is limited by the cutoff frequency w,, =
(4kz/m)*/? due to discreteness.

Analyzing oscillating localized modes with frequencies
lying much above the cutoff frequency w,,, I look for a
solution of Eq. (2) in the form

vn(t) = (=1)"Yn(t)e™mt + c.c., (4)

where c.c. stands for complex conjugate, and the enve-
lope 1, of the relative particle displacements is assumed
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to be slowly varying in time (but not in space), i.e., sat-
isfying the inequality 9, < wm¥n,. Substituting Eq. (3)
into Eq. (2) and keeping only the lowest order in the
rapidly oscillating multiplier exp(iw,t), I obtain the dis-
crete equation for the envelope 1,

i’d}n + D("/’n-{-l + 'l/)n—l - 2¢n) + A'r-(l'l/’yn—l-l|2"'¢11—|—1

+|¢n—1l2r1/)n—1 + 2|¢n|27"‘/)n) = Oa (5)

where

!
kz AL = k,. (27‘ + 1) > 1. (6)

= 2mwn’ T 2muw,y, (r+ 1) "=

Equation (5) is used below to analyze localized modes in
the chain (1) and mechanisms of their formation. How-
ever, I would like to point out that the assumption of
slow variation of the envelope in time as well as the ne-
glecting of higher-order harmonics to derive (5), assume
that the frequency w,, is large with respect to other fre-
quencies in the system, i.e., nonlinearity-induced effects
are not large in comparison with effects produced by dis-
creteness. This condition simply means that structure of
localized modes to Eq. (5) found below is an approzimate
one and the corresponding accuracy of such an approxi-
mation is similar to that of the so-called “rotating-wave
approximation” used in [1, 2]. Nevertheless, Eq. (5) is
very convenient for studying nonlinearity-induced insta-
bilities in the lattice (1).

As is well known, nonlinear physical systems may ex-
hibit an instability that leads to a self-induced modula-

J

tion of the steady state as a result of an interplay between
nonlinear and dispersive effects. This phenomenon, re-
ferred to as modulational instability, seems to be one of
the main physical mechanisms responsible for energy lo-
calization and formation of large-amplitude excitations
in homogeneous discrete systems (see, e.g., [9, 10]). Here
I will show a feature of this mechanism which may lead
to creation of finite-width localized modes which seem to
be a discrete analog of the so-called compactons [11, 4].

For the discrete model (5),(6) derived in the single-
frequency approximation, modulational instability can
be easily analyzed by the method previously used in Ref.
[10]. Equation (5) has an exact continuous wave (cw)
solution with the wave number k,

11)71 (t) = 1/)Oeia"

where the frequency w obeys the nonlinear dispersion
relation,

k
w = 4D sin? (k2_a) — 4,13 cos? (7(1) . (8)

The linear stability of the cw solution (7),(8) can be in-
vestigated by looking for a perturbed solution of the form

Pn(t) = (Yo + bn) exp(ibn + ixn), (9)

where the modulation of the amplitude b, = b,(t) and
the phase difference Xn4+1 — Xn = Xn+1(t) — Xn(t) are as-
sumed to be small in comparison with the corresponding
parameters of the carrier wave. In the linear approxima-
tion two coupled equations for these functions are

with 6, = kan — wt, (7

b, + Dsin(ka)(bny1 — bp) + Yo(D + Ap2") cos(ka)(Xn+1 + Xn—1 — 2Xn)

+2,.937 (2r + 1) sin(ka) (bpt+1 — bn—1) =0, (10)

—oXn + D cos(ka)(bn+1 + bn—1 — 2b,) — to(D + App3") sin(ka)(Xn+1 — Xn-1)

Arpd7 cos(ka)[(2r + 1) (bny1 + br1) — 2b,] + 4rX,.957b, = 0. (11)

Looking for a solution of Egs. (10) and (11) in the form
bry Xn ~ bo, X0 exp(iQna—iQt), I find the dispersion rela-
tion for small modulations of the cw solution. In the case
of standing waves, i.e., at k = 0, the dispersion relation
takes the form

Q% = 4(D + \927) sin?(Qa)

x [(D + A7) tan? (%‘f) - 21»\,1/;3’] . (12)

In the long-wavelength limit, when Qa <« 1, and for a
strong linear coupling, when D > 42", Eq. (12) re-
duces to the standard expression for the continuous non-
linear Schrodinger (NLS) equation with an even-power
nonlinearity.

Equation (12) determines the instability region,

tan? (%) < 1—24-TA’ where A = (13)

D
pw
of a nonlinear (standing) plane wave in the lattice. The
maximum grow rate of such an instability, i.e., the mini-
mum of the function Q22(Q), is realized at Q = Q., where
Q. is a solution of the equation

2 [(Qea _ T
tan ( B )_(r—i—l)—}—A’ (14)
and A is defined above.

The important issue of the present analysis of modu-
lational instability is the characteristic value @, which
in fact defines the width of pulses generated in result of
development of such an instability. As follows from Eq.
(14), in the limit A < 1, i.e., for large-amplitude non-
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linearities, the grow rate does not depend on the wave
amplitude and it tends to a fized value. The latter result
means that the characteristic width d of the pulses cre-
ated due to this instability is also fixed, e.g., at r = 1 a
simple estimate yields d ~ 2.55a. This estimate is rather
close to the width d = 3a of an exact compacton solution
recently proposed in [4] for a lattice with purely anhar-
monic interaction, i.e., Eq. (1) at k; = 0.

The growth rate of modulational instability for the dis-
crete equation (5) differs drastically from the correspond-
ing result for the standard discrete NLS equation (see,
e.g., Ref. [12]) where the instability analysis predicts
[10] the existence of arbitrary narrow pulses when the
oscillation energy is mostly localized at a single particle
site. In the case of the model (5), the spatial extension of
localized modes will be not less than three particles. The
spatial structure of the localized modes can be directly
obtained from (5) following the method of Ref. [2]. I seek
highly localized standing solutions to the NLS equation
(5) in the form t,(t) = Ae**f,, where I take fo = 1,
f—n = fn assuming |f,| < fi for |[n| > 1. Equations at
n = 0,n = 1, etc. then yield an infinite system of coupled
nonlinear equations to calculate oscillation amplitudes at
each site. It is easy to check that in the case

£= <1, (15)

D
ATAZT
the structure of a highly localized mode centered at the
site n = 0 is given by

Pn(t) = Ae*(...0,1,1,1,0,...), (16)
where the values inside parentheses are the amplitudes
at successive sites, and Q ~ 2\, A%".

I should also note that the result f; ~ % has a numer-
ically small correction which in the limit » > 1 tends to
zero (see Ref. [2]), f1 = 1[1 + (%)2r+1]. At r = 1 the
correction in the brackets is 0.125, being indeed small.
Accordingly, the value f, differs from zero, f, &~ 1 fI"*!
that at » = 1 yields f2 =~ 0.063.

For the primary field u,, the localized mode (16) cor-
responds to the mode pattern proposed by Page [2]. To
find the other mode, proposed by Sievers and Takeno [1],
in the framework of Eq. (5), I assume that the mode
is centered between the neighboring particle sites taking
fo = f1 = 1. Straightforward calculations which take
into account the condition (15) yield the spatially local-
ized structure,

Ya(t) = Ae*™(...,0,1,1,1,1,0,...), (17)

where this time Q ~ 3),A4%". As a matter of fact, the
mode (16) corresponds for the field u, to the pattern
(--.,0,1,-1,0,...), whereas the mode (17) corresponds
to the u, pattern (...,0,—3,1,—1,0,...). As has been
recently demonstrated in Ref. [13], the Sievers-Takeno
pattern shows a dynamical instability and, according to
[5, 6], such an instability may be attributed to an effec-
tive periodic potential which appears in result of the lat-
tice discreteness being similar to the well-known Peierls-
Nabarro (PN) relief to kinks. Thus the relationship be-
tween the localized modes to the models (1) and (5) al-
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lows one to conclude that the stationary mode (16) is
absolutely stable, similar to the Page mode, and it corre-
sponds to a minimum of an effective PN relief.

As a matter of fact, the model (1) assumes the interac-
tion potential symmetric. This is not, however, a general
case because it is usually harder to compress a bond than
to stretch it, and several studies were performed to take
into account the simultaneous effect of cubic and quartic
anharmonicity on localized excitations in quasicontinu-
ous [14,15] as well as in highly discrete [16,17] cases. Un-
fortunately, the calculations presented above cannot be
expanded to cover the case of a combination of odd and
even arbitrary powers. However, for the particular case
of the cubic and quartic anharmonicity when the interac-
tion potential is taken as V(z) = ko2 + Lksaz® + lkyzt
where £ = up41 — Uy, this can be done looking for a
solution in the form

Up = Alpn + (=1)"Ppe*mt 4 ... ] + c.c., (18)

and assuming the following scaling for the functions ¢,
P, etc.: P, ~ €, ¢p ~ €2, etc. The calculation itself
takes into account discreteness and it is similar to that
recently done for the case of highly localized modes in
a chain with a nonlinear on-site potential [3]. In the
main order I obtain the NLS equation (5) at r = 1
with the renormalized coefficient in front of the term

(|¢n+1|2"/}n+1 + |¢n—1]2¢n—1 + 2|1/)n|21/}n)7

A2 4k2
A (o 1), -
The condition 3kske > 4kZ which follows from the ap-
proximation based on the NLS equation and Eq. (19)
determines the region where the discrete NLS equation
has localized solutions, so that localized modes may ex-
ist only in the case when the cubic nonlinearity does not
exceed a certain critical value (see also Refs. [14,15,17]).

The effective discrete equation (5) in the continuum
limit reduces to the nonlinear Schrodinger equation with
arbitrary power nonlinearity,

17] o?

z% + Da—;f + 40 |¥|*y = 0, (20)
where £ = an is treated here as a continuous variable.
For the special case of r = 1, Eq. (20) becomes the cubic
NLS equation which is exactly integrable [18]. For the so-
called subcritical case, r < 2, Eq. (20) has a stable soliton
solution, but for the critical case, » = 2, and the super-
critical case, r > 2, the soliton becomes unstable display-
ing blowup (see, e.g., Ref. [19] for a review). The term
“blowup” designates the situation where the maximum
of |¢| tends to infinity in a finite time interval, and the
pulse width tends to zero. As a matter of fact, blowup in
an evolution equation means that the assumptions made
in the derivation of the equation break down, and physi-
cally the blow-up will be always stoped by dispersion or
higher-order nonlinearity. For the system under consider-
ation, the blowup dynamics may give (for the case r > 2
only) an effective mechanism of the energy localization
in discrete lattices, and this phenomenon allows one to
predict the characteristic time of such a localization as a

Ar —



48 BRIEF REPORTS

blowup time (see, e.g., [19]).

It is clear that additional terms do appear in physi-
cal models which may be reduced to the NLS equation
with higher-order even-power nonlinearity, and this may
prevent the blowup dynamics (see, e.g., Ref. [20]).
particular, taking into account in Eq. (20) the terms

~ a2, one may obtain the perturbed NLS equation,

K 02 o
(,;f + D—‘-b— + Da—f + 4|9 *

+a?), —(|¢I2’¢) 0, (21)

with higher-order linear and nonlinear dispersion terms
(which are in fact of the same order), and one may nat-
urally expect (especially, taking into account the results
of Ref. [20] where the effect of higher-order linear disper-
sion was analyzed to show suppression of blowup) that
these additional dispersive terms may indeed drastically
reduce the blowup dynamics. As a matter of fact, a pulse,
being compressed due to collapse, cannot become more
narrow than the localized mode (16), so that one can ex-
pect that in discrete lattices the blowup dynamics leads
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not to collapse but rather to localization of energy be-
ing initially distributed in a nonlinear lattice into large
amplitude excitations.

The influence of the discreteness effects on blowup has
been recently investigated numerically by Bang, Ras-
mussen, and Christiansen [21] for the case of the standard
discrete NLS equation with even-power on-site nonlinear-
ity. In particular, they have found that in a discrete NLS
equation a pulse becomes localized in finite time although
the degree of nonlinearity is subcritical, r =~ 1.95 [21].

In conclusion, in the framework of an effective dis-
crete equation for the wave envelope two possible mech-
anisms for creating highly localized nonlinear modes in
discrete lattices have been discussed analytically. It has
been pointed out that in homogeneous nonlinear lattices
modulational instability and blowup are likely two possi-
ble mechanisms for the generation of energy localization
within certain spatially finite regions, and those mecha-
nisms seem to be complimentary to an impurity-induced
energy localization in the case of inhomogeneous lattices

[7,8].

I am indebted to S. Turitsyn for stimulating discussions
and a copy of Ref. [21].
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